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A GENERAL THEORY FOR THE FUSION QOF DATA

1.R. Goodman

Command & Control Department
Code 421

Naval Ocean Systems Center

San Diego, California 92152

Abstract

The problem of data fusfon {s in a real sense the
problem of how to model the real world with all of its
great complexities. A minfaturized version of this is
the multiple target tracking and dats association prob-
Tem. There,a nusber of pieces of information arrive,
typically from disparate sources - such as from various
sensing systems and from human sources in the form of
narrative descriptions fn natural language. A procedure
has already been established for dealing with this type
of situation, called succinctly the PACT algorithm,
(PACT = Possibilistic Approach to Correlation and
Tracking.) The technique is based upon the premise
that al) arriving information can be adequately treat-
ed through some appropriate chofce of classical or
multivalued logic such as Probability Logic, Fuzzy
Logic, Lukasliewicz-K, Logic, or some(t-norm, t-conorm,
negation function)geheral logic as discussed in a
recent text of Goodman and Nguyen, Uncertainty Models
for Xnowledge-Based S‘steus. Moreover, 1t can be dem-
onstra t Tor a large class of logics chosen,

4 wversion of a partially specified Probability Logic
may be used instead. [ndeed, other approaches to un-
certainty, such as the Dempster-Shafer approach, can
also be strongly related to Probabilfty Logic through
the vehicle of random set modeling. In any case, the
structure of the PACT algorithm 1s based upon a gen-
eralized chaining and disjunction relation, which in
a classical probability setting reduces to the usual
posterior probability description as a weighted sum
of intermediate probadilitfes, an alternative form of
Bayes' forwulation. In the PACT algorfthm, joint fn-
ference rules are represented which connect varfous
combinations of matches of the fntermediate attri-
butes relevant to correlation (such as gealocation,
radar parageters, visual narratives, etc.) to the
consequential correlation levels between track his-
torfes. In addition, error relatrons involving these
attributes are also represented.

In the present paper, the PACT technique s ex-
N tended to the fyll ccmbination of evidence problem,
viewed as baing identical to the general data fusion
problem. In addition, data fusion is also lntﬂuts!y
Yinked with 1nternod51 activity within a larger €
system, Mere such C” systems are fdentified as net-
. works uf interacting decison-maker node complexes.
Some general examples of data fusion in this context
are presented, including a new approach to the use
of marginal conditfonal probabilities measuring valid-
ity of inference rules via "conditional objects”.

1. INTRODUCTION

For the past several years, throughout many fields
of science and technoiogy, researchers have been seek-
ing unificatfon and exteasiun of past results 1n order
to explain reality better and to be able to predict
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future cevelormernts, Recent events in theoretical
physics involving “superstring” theory, an attempt at
developing a Grand Unified Theory of the Universe,
underscore this quest {1].

In 2 more modest way, this paper seeks to estab-
lish a theory unifying, coordinating, and extending
the somewhat appearing distinct consepts of data fus-
fon, combination of evidence, and € systems analysis.
On the other hand, relatively little attention will be
pafid here to detailed computational techniques which
are particular to certain types of common data fusion
problemas suck as regression procedures for combining
stochastic sensor information, or maximum likelihood
or Bayesian procedures for putting together geoloca-
tion data arriving from different sources relative
to a given target of interest. All of the above-men-
tioned techniques are essentially specfal cases of
a much more general combinatton of evidence approach
on which this parer will concentrate.

In the past there has been much Jispute as to
what constitutes data fusign. A rea.onable three-fold
detinition has been proposed in [2], which, except for
a minor modification (as shown below), will be the
basis for the work here. In a related vein, mention
should be made of the recent (unclassified) survey of
data fusion techniques [3]. The basic definition for
data fusion, for completeness, fs given below:

{1} *The integration of information from multiple
sources to produce the most comprehensive and specific
unified data about an entity.”

(1) "The analysis of intelligence information from
multiple sources covering a number of different events
to produce a comprehensive report of activity that
assesses its significance. The analy.is is often sup-
ported by the inclusion of operational data.”

(fii) "Intelligence usage, the logical blending of
related information / intelligence from multiple sour-
ces.* [ "After fusion, the sources of the tnputs and
single preces of information must not be evident to
the user.® This we believe to be too restricted, IRG.]

One of the most common examples of fusion of data X

1Y
occurs in the multiple target-tracking problem. Here, "
information arrives in disparate form. Typically, this !

includes sensor information emanating from possibly
several different types of sources, such as radsr,
scoustic, non-acoustic, infra-red, and various others.
In addition, non-mechanical / human sensor sources

ray be present in the form of natyral language narra-
tives or descriptions, possibly in a parsed ferm,suit-
able for symbolizattons. Much of the arriving informa-
tion can be related to the targets’ observed ar pre-
dicted positions, velocities, or related equations of
motion. On the other hand, some of the data may refer
to other characteristics or attributes of the targets.
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Examples of the latter include: hull lengths, vessel
shapes, observed flag colors, names, classifications,
and other non-geolocational sensor parameter esti-
sates.

Neverthaless, as recently as a few years ago, the
great majority of approaches to target data fusion
were concerred only with target positions and other
geolocation data and ignored, at least in a formal
way, most of the other potentially useful stochastic
and non-stochastic (such as linguistic) information.
For a solid justification of this conclusion, see (4]
and (5], where a comprehensive survey of multiple
target-tracking techniques was carried out. For
comprehens {ve mathematical trecatments of such “class-
fcal® data association and correlation, see [6]
€.g9. For an exception to the above statement cén-
cerning the restriction of fusion to geolocation-only
information, see, e.g. [7],(8],[9].

However, with the advent of Al in the form of
expert and knowledge-based systems, it is apparent
that this additional information could be utilized.
(See, e¢.9. [10]).) Following the lead of medical diag-
nostic systems such as MYCIN [11], many such systems
(not necessarily military oriented] utilize only
two-valued logic in conjunction with some use of
probabilities to represent confidences. On the other
hand, some approaches take a"softer” decision view-
point as to the nature of descriptions and employ
throughout some form of multivalued logic (such as
the PACT algorithm [12]).

Moreover, data ;usion is intimately related to
the functioning of CJ3 systems. Indeed, fn many cases,
data fusion may be perceived as an interacting decis-
fon process occurring within sach decision-maker
node relative to the entire C Setuork of nodes.
Thus, any ongoing work in the C” arena, must effect
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cisfon-makers, human or automated, interfacing with
each other in general. Each node receives “"signals”-
which may be ordinary communication signals, either
from friendly or hostile sources (possibly undware),
or which may be received weapon fire. In general,
these "signals” are stacked vectors comprised of in-
coming data from several different nodes. In turn,
each node, which may consist of a single decision-
maker or some coalitfon of decision-wa‘ers and which
may Include passive type decision-makers, such as

"followers" , then processes the data. This is follow-
ed by a response or action taken towards other nodes,

friendly or hostile. (See Figure 1.) Associated with

FRIENOLY NODE :

ALL STATIONARY

3 DECISION-MAKERS

)

FRIENOLY NODE:
ARMY SQUAD

MOVING TO ENGAGE

\Nd ENEMY NOOE :
o o FORMATION OF
TANKS MOVING
ENEMY NUOE : TO ENGAGE

SECOND-LEVEL

£
é COMMAND COMPLEX

2= INOICATES INTERVENING 3 ENVIRONMENT AFFECTING

RECEIVED "SIGNALS" AND RESPONSES: TERRAIN, WEATHER,

SECRECY NEED
—=® INDICATE NODE ACTIVITY AT GIVEN TIME SLICE:

RECEIVED

"SIGNAL® OR RESPONSE

Figure 1. "Signal” _and Response Activity in 2 Portion
of Two C° Systems.

data fusion eSforts. Since 1978, the annual MIT/ONR
workshop on C” Systems - with its assoclated (un-
classified) annual Proceedings - has serveq as one of
the primary academic sources for generic C” studies.
(See [13] for a partial survey of these efforts, See
also {14] for a more thorough survey of (° work, where
many |bstrl§ts. analyses, and comparisons and con-
trasts of C? theories and related work are given.)
Surps‘singly. relatively few comprehensive theorfes
of C’ systemt have been produced, although many vaIu
uvable papers have been written as 2 resu?t of the C
Workshop on problems of distributive decision-making,
hierarchical systems, communfcations and security,
multiple target-tracking and correlation, and various
miscellaneous gare-theuretic and rrnre design prob-
lems. Asong the few theories of C” should be mentioned
[$1] and [42], the latter takingarelated view of fusion]
Based upon the above remarks, 1t {5 the author's
conclusion that:

(1) Data fusion,as commonly applied, is a process

\ THREAT LEVEL (TH)
NOOE NO. GF MEN (hM)
STATE [MPURTANCE (1IM)
PROPER SUPPLY LEVEL (SL)
(m) €Q. OF MOTION (EQM)
DAMAGE LEVEL (DL)
PHYS. PLANT CHAR.(PL)
NOOE Teee
STATE » locmrcccnnas]| = cecamcccecan—cace ceem-
N AVATLABLE UPDATED
ESTIMATE OF oausn
KNOWLEOCE - NCOE STATES (R)
BASE (r) ALGORI THM SUPPLY (F)
\ J INTERNAL NODE
ksrnucruaz {1ns) J

e ee
vans

Figure 2. Components of C3 Node States.

occurring fatranodally ulthig the context of an ap-
propriately chosen overall C3 system. That 1s, fusfon
occurs typically within decision-mak{ng nodes.

{2) All analysis and models of CI systems must fn-
clude subanalysis and models for fusion processes. In
particular, _this applies to this author's proposed
model for C3 systems [15],[16].

(3) Data fusion in its most generic sense can be
equated with the combination of evidence problem, a
well-known problem arising in the modeling of uncer-
tainties for knowledge-based systems. (For further
¢laboration and dackground, see [17].)

2. DATA FUSION, CJ SYSTEMS, AND DATA PROCESSING

Previously, this author proposed a bottomssup,
microscopic, quantitative approach to general C° sys-
tems (15].[16]. In that approach, a generic C3 system
{s 1dentified as a network of node complexes of de-
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INTERNAL DATA PROCESS \

INCOMING
MULTI-SOURCE
*SIGNALS"” (S),

]
DIRECTED
RESPONSE (R)

YES (0=1)

INITIAL
DETECTION/
SENSING (D)

NO (D=0}

ALGORI THM
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FORMULATION/

SELECTICN
(F)

OPTIONS/

VNV Y

COMBINATION y
OF EVIDENCE/ J
\«TM.N
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DECISIONS VJ

\
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Figure 3. Data Fusion as an Integral Part of a Node's
Cata Processing Structure.
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each node is the node state (see Figure 2.) describing
the current state-of-affairs given in terms of a num-
ber of functions such as threat level, equations of
sotion, and supply leve). In addition, there is an as-
sociated knowledge base reflecting the node's local
knowledge of the other nodes (friendly or adversary),
Also associated with each node is 1ts internal "signal”
processing design, as described in Figure 3. There,
data fuston plays a central rale {n transaitting de-
tectad "signals® to hypotheses formulations, which in
turn through algorithm selection leads to an output
response to other nodes (again, these may be friendly
or adversary).

Next, since we {dentify data fusion with the com-
bining of evidence, all of the knowledge-based system
techniques assocfated with the latter are avaflable.
In particular, this infers (see [17], Chapters 1,2
and Figure 1, page 14) that a series of underiying
processes are involved in data fusion. Basically,
there are five such processes (including natural
language in its broadest context) given below in se-
quance of information processing:

(1) Cognition: Human and/or machine in recognizing
the pattern of receaived “signals”, recalling that
"signals® refar to efther ordinary signals or any
other recefved {nput, Tncluding weapons fired.

{2) Natural Language Formulation: This is rele-
vant to all narratives produced by human observors.
Machine language could also be put in this area, if
used in the same context. Parsing leads to the next
process:

(3) Primitive symbolic formulation of data, in-
cluding strings of well-formed formylas according
to basic syntax, without further or refined con-
straints on structures. Formulations include use of
basic quantifiers and connectors: ., for & ("and” or
conjunction)s v, for "or® (disjunction}; ( )', for "not”
(negation); 9 for “if_then _ * (tmplication).

(4) Full formal language formulation of data: Use
of rules of syntax, constraints on wff's, such as
commutativity, associativity, idempotence, distrib-
utivity,etc.

{5) Fu)1 compatible (homomorphic-like) semantic
evaluations or logic chosen (or model selected).

Any consistent or compatible choice of a full
formal language (4) and a semantic evaluation or

logic (5) we will cal) an algebraic logic description
pair (ALDP).

Three common choices for ALDP are:

ALDP 1 = (Boolean algebralor ring), Classical
two-valuedbogic) with implication 2
given as % , where g8 ®a {s identified
as 8’ va , for all wff's o 8.

ALDP 2 = {Modified boolean algebra = pseudo-comple-
mented Tattice, Zadeh's (min-max} Fuzzy
Sets or Logic). As above, 3 = =,

ALOP 3 = (Boolean algebra, Probability Logic);d = =

A fourth useful(Canditional Probabtlity logic)
ALDP will be introduced later. In the past, often only
ALDP 1 or ALDP 3 were chosen, fn effect, to the ex-
clusfon of multivalued logical choices. That is, either
Classical Logic or Probability Logic,or some combina-
tion,would be chosen for the basic model to combine
information or fuse data, with little attention paid
to the formal aspects prfor to semantic evaluations,
(Again, see (4],[51.)

Figurs 4 summarizes the above analysis of data
fusion.
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DATA FUSION PROCESS (FV) _
T
INITIAL \ MENTAL IMAGING/ NATURM?LANGUAG‘:/
gsgll:ﬂm(l/ COGNITION MACHINE LANGUAGE :
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E -

DECISION PROCESS
.
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EXAMPLES OF ALDP'S

HYPOTHESES
FORMULATION/ ALDP 2 = (MODIFIED BOOL.ALG. |,
OPTIONS/ IADEH'S FUZZY LOGIC) ,
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IN THE FIRST THREE ALQP'S, IMPLICATION 3 IS INTERPRETED
AS % , WHERE (8 = a)
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(DISTRIBUTED) LATTICE.

Figure 4. Subprocess Expansion of Data Fusion/Combination

ALDP 3 = (BOOL.ALG.,PROB. LOGIC),

ALDP 4 = (COND.BOOL.ALG.,
COND. PROS. LOGIC).
(NEWLY PROPOSED ALDP) .

(8' v a), FOR ALL PROPOSITIONS a,8.

of Evidence Process Connecting Initial *Signal”
Detections with Hypotheses Formulations.
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3. DATA FUSION AS A QUANTITATIVE PART OF AN OVERALL
€3 SYSTEM AND DECISION GAME

So far, in this developreat tcward a general
theory for the fusfon of data, only general qualita-
tive descriptions have been given for the processes
favolved, Mowever, as ugtlomd before, & quantita-
tive model for generic C° systems has been established
compatible with these qualitative formulations{15],
[16]). Inputs to the structure consist basfcaily of
ten sorts of known relative primitjve relations PRIM
among the variables describing a C° system. These var-
fables are:node (Nyhypotheses selection (H); detection
fo; of incoming "signals” (Sb-i algorithm selections

F); fnitial noae responses (R),prior to envircnmental
distortion (G) and additive noise (Q). To each vari-
able s affixed subscripts {g,k) (or (h,g,k}) where
g={a,1) denotes the fdentification of a particular
node in question in terms of the CJ system a (friend-
1y or hostile) and node number 1, while k represents
a discrete time index t . Specifically, the relation
breaks down into S intrfnodal (within nodes) rela-
tions, 2 internodal (between nodes) or ngresnon re-
lations, and 3 prior relations for each C* system.
These relations are expressed in terms of conditional
or ynconditional probabil{ties, as they stand, but
the results can be extended, with appropriate replace-
ments, to A logic setting. (Again, see
{15].} Then by making certain reasonable sufficiency
assumptions among the variables and utilizing basic
properties of conditional probabilities, 1t can be
shown that each updated node state can be obtained
explicitly fn(probabilistic) terms of the other vari-
ables and node states through PRIM, Thus, we have:




-

Ibeares 1. (See [15], Theorea 1.)
Suppose PRINk and l’  dre as described above

with PRIM given in further details in egs. (3.2)-
(3.4) and Tables 1-3. Then under the above-mentioned
sufficiency conditions,

P(Ng.k) - ’g.k("mk) . (3.1)
where 4 g §s a computable functional involving a fi-

nite nunscr of integrations and arithmetic operations
upon the elements of PRIMk given in Table 4, .

priw, 4 corinlT 1 pmen T2 prind2y . (3.2)

where for C° system 2, g=(a,1}, etc.,
,RI"£1.a)i(gu)g_l]....(s)g'k‘.(a)o.(1s)g.é).,, g

osk‘sk
(3.3)
and whtr:)
"m*‘«ﬂmmﬁﬂdnhd*ﬂ““”mm&nlmm
Osk, <k
(3.4)

The numerical symbols (S)g y etc. arc skortaned forms
for the primitive relltioas given in Tables 1-3:

(1)g ¢ = Bl 4100 S0 ),
(2)g y = p(Fg (I )
(Vg k1 PR ka1lFg krSq, Mg ),
()g k™ PGy Ry oy ol y ),
(8)g,x = P(0g y1Sg s Kgk) 5

Table 1. Relative Primitive Intranodal Relations.

“Mmm'“%mhﬁ"“%ﬂur

(y)hng.k’] - p‘“g.k*] .hlno);

The basic internodal analysis is developed via
addetive nonYinear regression relation pe

(ss-k+l"a.k9l'("'k’)'Gi.g.k*l(“h.k)’qh.q.kf1-

where variable U‘ PR indicates original possible

possible node source for “signal” at time k, given
reception by another node at k+1.

Table 2. Relative Primitive Internodal Relations.

PRIOR/INITIAL TIME
(8)g = plng)

(15)p,9,0 * PRy gl¥g 17h + Kg),

(16)g o = P(Sg olNg) -

Table 3. Relative Primitive Prior/Initial Relations
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(9,01 (Rg k110, k05g kMg i)
'!I (” k-(z)g.k‘(3)g.k’1ngodeg'k »
(over all ’a.k'ng-k’

(10)

9,k+l * p(Ng.k*l ’Dg.k'sg'k 'Ngok)

- (4) -(9) aR
(?Jf; alls‘k" g.k+1 Fg a1 5

Rg.ke1

(AP Pe

< RIS )
Dq,k'o 9, 9.

= p(RQ.kﬂIsg.l'"g.k)
1

(12)g r = PG 140 45,10 i)

" 100 g
('3)g.k" -‘p(Nﬂ.kﬂ 'Sg,k'ng,k)
. . fao((lZ)g-*“) .

(14)".g.k“- p(sg.k,llah.k)

* POy g ke1"Sq,ke1"Ch, g, k01 (Rn i) ).
(15, g,k = PRy i IMg by ™)

over all
s )

nor=1"Mh, i1
(16), = b5, INg)
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Table 4. Structure of ¢g i In Theorem 1 Through
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Sequence of Caléulations lnvolving PRlNk

In turn, a simple tuo-psrson 2ero sum game can
be established, called the C° decision game. MHere,
Player [ corresponds to entTre U3 system a=1 (ssy.
friendly) and Player Il corresponds to entire C° sys-
tem a=2 (say, adversary). In this game, a move by
Player § correspords a choice (up to given con-
straints) of PRIM[{Y.J) gl 11, and the resuliting
Toss or utility dlie to any such joint move L, 1s a
function of the marginal updated node state 5Istr1-
butions, according to Theorem 1 as

Lk(PRIHl)-HOEk((p(N..k)|lll 9})
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- HDEK({ﬁs.k(PRIHk)IaII 9l), (3.5)

where MOE, represents a single figure-of-merit, com-
bining va;ious measures of effectiveness (moe's) or
performance (mop's) for the two C3 systems, (Note, that
although {deally the _entire joint node state distri-
bution of the two C3 systems should be sought, in
practice this is difficult to do, because of the great
combinatoric computations involved.) Typical moe's
that could be used Include:averaged measure of import-
ance IIL x ¢ dveraged measure of threat Tﬂ: g © upper

1 ]

bound toEAl entropy ENT. Kk and averaged measure of
»
performance ICI: k + 311 computable through p(llg WS
»

for C” systas a, by use of Theorem 1. (See also'[lsl,
egs.(59)-(6¢).) Then one could let

WOE, = MOE, | - WOE, | . (3.6)
where
MOE, = ATRL o+ 2 TH o+ ageENT,
3 W (3.7)

and the A1‘s are some predetermined weightings.

Symbolically, the C3 decision game appears as
given in Figure 5;

Player I (Fr1endly"i$ f{:ten)

Player 11 Typical Move: PRI
(Adversary C
System)
Typical Move:
prinf1+2) > Loss= L, (PRIM,)

3

Figure 5. Symbolic Forms for C” Decision Game.

Finally, one can then spply all the usual game-
theoretic methods to this C~ game, such as seeking
Bayes decisfon functions for moves, least favorable
strategies (all subject to practical constraints),
minimax strategies, the game value, and varfous sensi-
tivity measures. It is the long-range hope that such
a4 game will be a useful decision-aid in planning com-
mand strategy. At present, a relatively simple imple-
mentation scheme is being carried ons for testing the
feasibility of such an approach to C”° systems. (See
[16] for further dctails.g

4. STRUCTURE FOR DATA FUSION: THE CLASSICAL
PROBABILITY CASE

With the general 53 system context for data
fusion established in the previous sections, let us
now return to the task of developing a general quanti-
tative structure for data fusion. In 1ight of the pre-
vious remarks (again, see Figure 3), fusion is a pro-
cess intermediate with 1,1t1l1 sensing and hypotheses
formulations, within a C” node complex of decision-
makers. In additfon, the fusion process decomposes fne
to natura) subprocesses (see Figure 4). Thus, in
essence, we wish to expand the first relative primi-
tive intranodal relation appearing in Table } :

P(FU) = p(¥|D,S) , (4.1)

where for reasons of convenience from now on we sup-
press the denotfonal-time indices, unless necessary.
As stated before, p need not necessarily refer to ord-
inary probability evaluation, but may represent other
evaluations such as possibilities for Zadeh's fuzzy
Logic or for more general multivalued truth systems,

In determining the above evaluation, another var-
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table Z is often present. Z represents the vector of
auxiliary or "nuisance® characteristics or attributes
which can be useful in connecting H, the variable rep-
resenting possible hypotheses or decisions as to what
unknown parameter value or situation or diagnosis is
occurring, with input data S and detection state D,
Th"§ for example, if we are physically in a bunker-

a C” node- S may be observed loud noise, with D=}
(definitely detected), and H could have possible do-
main values say don(H)-(Hl,...Hs) as given in Table 5.

H‘ = no change in previous situation

"2 = enemy is about to mount the promised big
offense

H3 = enemy is Just feeling us out
H4 = enemy wants to negotiate

I = none of the above situations hold

Table 5. Typical Set of Values fnr dom(H).

Thus ,dom(H) could serve as a legimate sample
space, if conditional probability p(H|D,S) could be
ocbtained for all possible values of H 1n dom{H), 1.e.
(H{D,S) could be interpreted as a random variable
over dom(H), In this case, suppose also that Z is an
auxiliary variable representing any of a likewise col-
Tection of disjoint exhaustfve situations locally go-
ing on at the bunker. Here, let dom{Z) be given as in
Table 6 below:

Z‘ = nothing happening
Zz = accidental explosion in compartment #1
Z3 = accidental explosion 1n compartment #2

Z‘ = enemy shot missile at us and 1t either
hit us or Just missed

25 = none of the above sftuations hold

Table 6. Typical Set of Values for dom(2).

Thus, again by disjointness and exhaustion, {t
is reasonable to conclude that dom(2) could serve as
2 legitimate sample space and Z can be interpreted as
a random variable. A1l of this leads to the evaluation
of the conditional probabilities p(2|D,S), which to-
gether with the values for P(H|D,S) can be used to
obtain the standard "integrated-out" form for the post-
erfor distribution of H as given below o

5
p(H-HJ]DlS)-‘Z‘p(HJlliID&S)

]
'1219(11lDlS)~p(Hjlziloss) . (4.2)

usfng the standard chaining property of conditional
probabiiities and replacing the antecedent comma no-
tation by conjunctions, One could reasonably interpret
the evaluation in (4.2) as the probability valua for
the expression

"If D and S,then Mj' (4.3)
through the probability values for the expressions

*If 0 and S, then Z" and "If Z1 and D and S, then Hi
(4.4)

0f course, one need not use the above evaluation ex-
actly to obtain useful equivalent values. As it standy
P(2,]D8S) can be interpreted as an error or variability
probability for attribute Z, while p{H |2, 8D&S) can be
understood to mean the inference rule ar L|b111ty com=
necting 7 and 0 and S with H. On the other hand, often
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the conditional data or regression probability
p(slziwj) and the jofat prior probability p(Ziulj)

are available, assuming here D=1, which by use of
Bayes’ theores also yields p(H-MJID&S). One standard

result is to assume the above probabilities are
gaussian, which in the dfscrete problem here, must
serve as very rough approximations- in addition, the
sets dos{H) and dom(Z) are not easily ordered com-
patiblc with 3 real! domatn for gaussian random var-
{adles . Then, 1f the mean of the conditional data
distridbution is Tinear in the data S, p(H 8Z |S)
takes on & eralized weiohted least squ‘n! form,
(See, ¢.g. [18].) The final result, p(H-NJIS). as in

( 4.2), 1s then a mixture of the probabilities of
such least squares estimators.

S. STPUCTURE FOR DATA FUSION: THE CLASSICAL
PROBABILITY CASE MODIFIED

Retaining the same terminology as before, sup-
pose now that H,Z,S are varfables such that any of
the corresponding "sample spaces” do not truly con-
tain disjoint exhaustive events; in particular, the
disjointness condition may be viclated more often
than exhaustiveness- which we will assume here is
always satisfied. Then 1t follows that simple cor-
responding probability measures as in Section 4 can-
not be immediately assigned. Nor should “brute-
force” normalization procedures be employed, unless
absolutaly necessary. For example, consider H. Sup-
pose in the above example in Section 4 (Table 5), the
enemy could simultaneously mount the promised offense
(M,), yet also be feeling us out for peace (H,), or,
evén additionally, wanting to negotfate (H,). Thus, in
that case, dom{H)={H,,.. H:}, as it standg. is pot a
suftable sample spacl of disJoint tlementary events.
Indeed, the elementary events H. are not so element-
ary, many of them, due to conpl!x causes, being over-
lapping! Equivalently, M fn its current form may not
be a Tegitimate random variable. What to do?

Mote first that it 1s reasonable to assume that
the simple labels K, really rearesent complex phenom-
ena and may be bctt‘r described through factors con-
tributing to them. For example, some factors for N
in Table 5 are:

3y fmportance of node,

a - relative strengths of us and them,

ay - past and present incoming salvo rate,

3, " duration of war to this point,

3 " what the enemy knows about us: location,
a - present weather conditions,

a, - safety level-coordination level to
pravent accidents;
FY .1'.".7'

Then 1deally, in turn, given enough of these
factors, define rigorously the Nj's in terms of com-
binations of values of the a 's. One simple approach
is to deterxine the natural ﬁo-ains of values for the
a's ., «nhkL ka1,..,7, letting

9 4 don(a,)x. -xdom(a,) (5.1)
and
"J . bj,] xeex bj,7 <D, (5.2)
is determined by H,, §=1,..,5. Thus,

where b ca
the ovo?!‘puinb of the H,'s in general will not dis-
appear, but rather will b‘

nJ‘ n "Jz ) (5.3)

Clearly, in this case, f all atatistical relations
between the pevlv-introduced factor variables a 's
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and the variables S and I are known, then the
p(HJllilcls) can be computed in (4.2). For example,

if the a? given the Z 4D&S are all mytually statis-
nd

tically epengent. then
p(MJlZ1lDlS) -kg]p(ai < nj.klzisn&s) . (5.4)

and in general

5
jX‘p(MJIZ,ms) >, (5.5)

and the computation 1n (4.2) {nvolving summing over
the domain of 2 is no lonyer valid 1f 7 also repre-
sents, as H, possidly complex overlapping events.

One approach to redefining the problem here is
to replace the, in genera),overlapping H 's and over-
lapping Z,'s by suitable partitioning ofjtneir domain
spaces an& then recompute the corresponding condition-
al probabilities 1n (4.2) invelvina the partitioning
variables, For example, for convenience, denoting

1=0,..,5, (5.6)

for any subset Kgl, or equivalently, KeP(I) (power
class of I, the class of all subsets of 1), define

d - <

"[K] j:K "j J:I<K "j <D, (5.7)

Hex) i (M1 3eK) ¢ Pdom(H)). (5.8)

Thus for K=o,

“[.] *Hy " L JH (5.9)
for K={J}, JeI,

"((j}) '(“j) N (5.10)
and for K=I,

Hpy = dom(H) ; Hrpy J:I Hy (s.11)
and for example, for K=(1,2,4},

K[K] - H] n H2 n H‘ - (H3 u Hs) . (5.‘2)

Clearly,

wi Mpeglk s 1o ey # 9 (5.13)

is a disjoint exhaustive partitioning of P. In a sense,
H {s the tightest disjoint exhaustive partitioning of
D which generates back all nj's through disjoint
unions. Thus,H can serve as “a sample space in place
of inftial dom(H); the H_'s are in general overlapping
compound events of H, 51{11ar comments hold for Z,

Note that the mappings H ):P(l) + P(dom(H))
and H[ % P(1) + P(D) are injective (1-to-1 into),

for all K;! such that H K # 6. Hence we have the
bijective relation for all K such "[K] [

K~ ey ~ My - (5.14)

For any jel, define the filter class of NJ , or
one point coverage class of HJ. as

G(H ) ¢ (”(K)lJtKEl}
2 Fny) § (g laeketongey # 00 5 (5.15)
define similarly,
q
F[MJ] ("[x]“‘“l-“[x] o). (5.16)
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Note also that the mappings F( ):don(H)*PP(dom(H)
and Fp q:dom(H) =+ PP(D) are injective. Note, further,
for any jcl, the bijective relations

H, = O = OF « F +~ F . (5.17)
J (KIJ‘KEI) ["JJ ["J] (Hj)

Now let (a,B,p) be a probability space and
¥N:0 + D be a random variable corresponding to
(a |z|mn5). In turn, define random subset s&s) of
dom(M), S&":n + P(dom(H)), where for any w ¢ R,

ST 4 0yl e1 4 Go) € W) (5.18)
Then it follows that

I iff or

(1)
ift o (S; ' = Heuyd
{KIS:KSI.H[K]f.) H (x)

e stV ¢ F

WcH (U H[K])

(hy)

11 H, e s, (5.19)

Hence

Theorem 2. (See:[19]; [17].,pp.379-381.)
For all Jel,

posS(HJ) fp(uec HJ) - p(HJ ¢ Sﬁ")

= p(HJIZ‘lDlS). (5.20)

The significance of this theorem will be more
apparent below. lote also that unless dom(H) ts a
disjofint partftioning itself of 0, (5.5) holds; but
it always follows that

[ plWepyy) =1 (s.21)

Again, similar results hold for dom{Z) replaced by
a suitable space resulting from appropriately chosen
factors.

On the other hand, often we do not know all the
relevant factors or subvariables contributing to
given compound events and even {f these variables can
be pinpointed, often we do not know their natural do-
sains or perhaps do not know ths distributional re-
latfonships involved, etc. Thus the technique of con-
structing directly a product space , such as 0 for H,
as above, may not be appropriate.

However, we can still make the basic identifica-
tiors tn (5.14) and (5.17), where we onit all the
square bracket expressions. Suppose now that prob-
abtlistic evaluations are available such as
p(MJ|Z 804S) and p(Z, |D&S) for al) 1 and § , but that
the poisible ovcrlap‘ing nature of the compound events
fs taken into account. For example, these calcula-
tions could be obtained from experts by soliciting
the indtividual/marginal possibilities occurring with-
out regard to the joint or overall occurrences of the
remaining events,

Can these individual probabilities or possibili-
ties be made compatible in a rigorous manner with the
previous random set construction? The answer is Yes,

Theorem 3.([17], Chapter §)
1f poss,,:dom(H) + [0,1] 1s any function, perhaps
ting® ot

representing the expert opinfons & panel, as human
intagrators of {rformation, taking {nto account the
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complex and pcssible overlapping natures of the
events in dom(H), then by letting U be any uniformly
distributed random variab1? ?ver [0,1] and defining
the nested random subset 3“2 of dom(H) by :

st ¢ poss; (U1

= . 5.22
(Hjljcl. poss"(Hj) 2 U} ( )
it follows that for all jel,
2 .
HJ € S& ) iff possH(Hj) 2 U, (5.23)

whence there exists a legitimate probabiiity measure
p:PP(dom(H)} — [0,1] such that

possy ) = pliy ¢ SZ1) = pist?) Su,))
= 7 pst®aw, ). (5.24)
jeker M (x) .

Remarks .

Note first that the two definitions for SH will
differ in general {n structure, but are both ' (among
many other possible definitions for such random sets«
1175. Chapter 5) one point coverage equivalent to the
given arbitrary possibility function over dom(H). (For
comparisons of choices among such candidate randoe
sets, see [20], where entropy 1s used as one criterion
Each domafn value H, 1s naturally identifiable with the
filter class G(M ) éontaining a1l possible sets of H,'s
having also HJ J’ in them, 1.e., all possible sets 1f

interactions H( » J in K. Thus it is not unreasonable
that the given Bsssibility value assfgned to H, can
also be expressed rigorously as a probability Jinvolv-
the next higher order interaction domain P(dom(H))
above dom(H). Again, as before, all results hold for Z.

In a word, the possibilistic or general fuzzy set
approach fs seen to be essentially a weakened form of
the full random set approach, where any onc of the one
point coverage equivalent random sets S is fixed for
the modeling over P(dom(H)), replacing dom(H). This
can be thought of as being somewhat analogous tn the
situation where a probability distribution describing
2’ problem is only partially specified, such as up to
the mean and variance,

Finally, homomorphic-1tke relations (involving the
one point coverage relations) can be established be-
tween a number of operations established among possi-
bility functions,or fuzzy sets, representing general-
fzed unfons, intersections, and other set-1ike opera-
tions, and corresponding ordinary set counterparts
applied to the one point coverage equivalent random
sets. (See, e.g. [17], Chapter 6.) Some of these re-
lations will be used in Section 6 for representing
data fusion in terms of the genera! combinatton of
evidence problem. (In a related vein, see [21] for
;oue ;eceut work using random sets in modeling prob-

ems

6. STRUCTURE FOR DATA FUSION:THE GENERAL FIXED
ANTECEDENT CASE

The results of the previous section point up
somg of the difficulties involved in evaluating probd-
abilities for apparently"disjoint elementary” events
which are 1n reality compound overlapping and diffi-
cult to define precisely.

Following the philosophy of approach outlined in
Figure 4, we will establish a general procedure for
treating the combination of evidence problem, which
reduces to the probability or possibility cases when
appropriate. ldeally, this procedure should reflect
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cognition (box 1 in Figure 4), the first stage follow.
ing initfal "signal® detection, but for purposes of
simplicity this will be omitted in the present paper,

In particular, consider the arucial expression
Q for data fusion appearing as prinitive intranodal
relation (1) in Table 1, sans the probability evalua-
tion,and in natural language form:

Q9 *1f D& s, then v, (6.1)

In symbolic form, where « rapresents &, v repre-
sents "or”, ( )' represents "not", ¥ represents impli-
cation,

g »(0-5 I H), (6.2)

Suppose next, the following two basic properties
hold for the natural Tanguage used:

(a) Letting To represent absolute truth, for any pro-
position a ,

el T° =a, (6.3)

{.e., T plays the role of a multiplicative unity w.r,
t. "and”, and can be denoted w.1.0.9. as 1. Dually,
we can assume the existance of an absolute falsehood
F :nd let it play the role of an additive zero w.r.t,
"or”.

(b) "%* and “or" are commutative and associative
with 8" being d:stributive over "or”,

These properties are quite mild and will serve
in no way here to restrict our choice of ALDP (alge-
braic logic description pair). The four examples in
Figure 4 a1l satisfy these conditions.

(1) Suppose also that auxilfary attribute variable Z,
used to connect D and S with H, is such that

or (Z,) =T (6.4)
2, ¢ don(Z) °
Equivalently, this means that the possible “"values” of
1 are exhaustive, even 1f they overlap. Symbolically,

v () =1, (6.5)
Z' ¢ dom(Z)

(11) Suppose, further, that Z relative to 0,5,and H,
is such that

Q= "IfD&S, then Hoor " , (6.6)

where
v ] or (Z1 $ not Zi)' (6.7)
ZI ¢ dom(Z)
In many formal languages, the Law of Excluded
Middle holds so that for all propositions a,
s & not{a) = F° . (6.8)

But in many multiple-valued logics, such as Zadeh's
Fuzzy Sets, (6.8) does not hold, and an alternate
condition must be sought to obtain the desired re-
sults we seek. (See also Example 2, Section 7.)

Symbolically,
g~ (DS S (Hyy)), (6.9)
where
) v (25 & Z"). (6.10)
Z' < don(Z]

Then 1f we apply (a),(b),(1),(11) to (6.1), we
obtain in symbolic form

Q=(0S3 v
Z1 [

( H2 2.2, . (6.
R AT EARRAALY
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Next, two more restrictive assumptions are made:

(c} The antecedent of implication is distributive
over "or”; equivalently, a homomorphism exists rela-
tive to "or" for a fixed implication antecedent. Thus
for any propositions Opacecs Op 2 B,

m "
(8 3 (v °i))' v {8 3a,). (6.12)
{=1 1=]

(d) Implication chains relative to "&". Thus for any
propositions a,8,y,

(v 2 (a8 v 8:8")) = (y 38)-(y-8 3a). (6.13)

Again, 1t can be shown quite readily the first 3
ALDP examples fn Figure 4 are such that their rormal
language components satisfy as well (c) and (d), when
inplication 1s fnterpreted as

3 =9, (6.14)
where for all a,8

(g +a) i’(e' va). (6.15)

(See Examples 1-3, Section 7, where ALDP 1-3 are pre-
sented in some detail, For ALDP 4, see Section B.g

Theorem 4,

Suppose 2 formal language of propositions satise
fles constraints (a),(b),(c),(d). Suppose alsoc that
variables D,S,H,Z are to be interpreted as before in
the general sense and are such that (i) and (11) are
satisfied, then

Q= v (Z,:0,5:H), (6.16)
Z’ ¢ dom g) 1
where for all 11 in dom(2),

s(l,;b.s;u) ¢ (D.s 3 Z,K)

= o(Z,i0,5)-h(H;2,:0.5), (6.7)
where
g(Zi;D.S) = (DS 3 Zi) (6.18)
can be interpreted as an attribute variability or
error form and
h(N;Zi;D,S) . (21-0-5 3H) (6.19)

can be interpreted as an inference rule connecting Zi
and H,
[}

Thus.from the remarks preceeding Theorem 4, the
formal language for Classfcal Logic and Probability
Logic, boolean algebra, with implication given in
(6.14),(6.15),satisfies (6.16)-(6,19). Similarly, the
modified boolean algebra representing the formal
language of Zadeh's fuzzy Logic (min-max type) also
satisfies the above formal relations for the decompo-
sition of the key expression for data fusion Q.

In turn, we seek the full semantic evaluation of
the data fusion expression through probability or
possibflity or other means, compatible with the re-
sults of Theorem 4,

In order to accomplish the above goal, we first
review some concepts which may not be too familiar to
many. Define a copule ¢, 2s a mapping o,:[o.1]"’[o.1]

which {s the same as ¢ cumylative probability distri.
bution function over {0,117 such that each rarginal
distributfon. of one dimension corresponds to a
random varfadle U, uniformly distributed over [0,1],
1=1,..,n. {Copulas can be used to solve elegantly the
important problem of determining 811 possible joint
distributions given specified marginals. See [22].)
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For purpose of simplicity here, define a co-copula
4o 252 mapping oor:[O.I] +[0,1] which coincides

with the disjunction probabilities corresponding to
the conjunction ones for some given copula. Thus if
U, s any r.v. uniformly distributed over [0,1], for

i=1,..,n, and (Uy,..,U ) has some legitimate joint
distribution, thel ¢, dBfined as follows will be a
copula and ¢ . def1n&d below will be the co-copula
corresponding’ to 6yt
For any ¢, ¢ (0,11, 1 ¢ I, ¢ {1,..,n},
n
gleqs.cy) = 9(121(01 s e, (6.20)

n
$or(Cqeency) = 9(1:1(01 s ¢c,))

- X(_])Clrd(x)*]
efkal,
where analogous to previous notation

..‘(C(K)) 13 (6.21)

<(x) 8 (e, [1ex), (6.22)
by use of the modularity or Poincar€ expansion proper-
ty of probadilities. (for further properties of copu-
las and related functions, see e.g. [17], section
2.3.6.) Consider also the followina related concepts:

Define a t-norm - also denoted as ¢ - 2 2 map-

ping ¢ :[0.])n + [0,1] which is associative, commuta-
tive, flon-decreasing, continuous, and possessing bound-
ary conditions

’&(1 ,X) =X 3 ‘&(olx) =0 . (6-23)
for all Osxsl, and such that
¢y = min, (6.24)

Similarly, define a t-congrm as the demorgan transform
of some t-norm

0°r(x1...,xn) = 1- 0&(1-x1....1-xn). (6.25)

for all xj....x ¢ [0,1]. Also, dufine ar grchimecean
t-norm as a t-norm where for all O<x<l,

o (0x) < x5 (6.26)
dually, define a t-conorm to be archimedean iff
$orlXex) > x (6.27)

for all O<x<l .

Consider some examples of conjunction and disjunc-
tion functfon pairs being copulas or t-norms with co-
copulas or t-conorms.

First, it should be noted that {(min,max) and
(prod,probsum) are the only such functions which are
both{copula,co-copula)and(t-norm,t-conorm)pairs simul-
taneously; further, the latter pajr is also archimedean
where”prod“denctes ordinary arithmetic product, while
‘probsus denotes formal probability "sum* (displaying
modularity of probability) as the demorgan transform
of prod. {See fZJ], Section 4.)

(prod,sum) is a non-derorgan archimecean pair,
where sum is to be interpreted as ordinary arithmetic
sum , but bounded by unity; the latter is a t-conorm
but not a co-copula,

Finally, to complete this brief preliminary dis-
cussfon, the fmportant
for archimedean pairs of t-norms t-conorms, states that
for any such pair (o&.o ), there always exists a cor- R
responding continuous nsa-increasing function h:[0,1]-R,
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with h(1) = 0 and Rt denoting the extended real line
including +=, such that, assuming the above pair is
also demorgan,

n
NS I h'](min(h(o),iZ?(x1))) ; (6.28)

conversely, any such h as above generates a legitimate
archimedean pair, where the t-norm part 1s given in
(6.28).

Next, for convenience define for all i,j

ad (0592 o d(psaz); (6.29)

8 d(z-0-5 9 m) a8 (z,0005 3 0)). (6.20)
Then make the following semantic evaluation of Q
preserving the formal structure {n Theorem &:

poss(Q = Qj) = poss(Q = (D-S 3 uj))

- oor(o‘(possa(of),poss‘(B{j))).
Vel (6.31)
In particular, the cvatuztion ¢f C using Zadeh's
original fuzzy set theory or Fuzzy logic is easily
seen to be a special case of (6.21), when

= max. (6.32)

4 - min 4or

More generally, the PACT algorithm [12], briefly
mentfoned previously, can also be shown to be essent.
ially a special case of the data fusion evaluation
given 1n (6.31), where now ¢y and ¢, are in certain

paramterized families of conjunction and disjunction

functions. In the PACT algorithm, data association or
“correlation” is to be determined to hold or not for

& feasible pafr of developing track histories, where

in addition to geolocation information,present may be
other attribute forms, A typical example is where

I represents the following potential matching attri-

butes for the two tracks(fl and #2):

geolocation parameters for #1, for #2

sensor system parameters for #1for #2

hull lengths for £, for §2
lassifications for #1, for #2

flag colors for 1, for #2

.(6.33)

Also, for this example, H (denoted in {12] by 8) rep-
resents correlaticn level between #1 and 12 (tetween
N end 1 when evaluated), while D=1 is assumed and S
represents observed (in error) counterpart of Z. Then
the inference rules possB(B ) correspond to some ex-
pert-dertved {or derived by‘j analytic or physical
considerations) relation between some combination of
degrees of matching attributes in general with poss-
{ble correlation levels H ; the terms poss_{(a.) rep-
resent error distributions between true and oéserved
auxfliary attributes Z. PACT can operate upon & mix
of probabilistic fnformation and attributes and lin-
guistic-based information and attributes, as showa

in (6.33), where typically the first, second, and
possibly the third entries are in stochastic form,
while the remaining entries are narrative-based and
given in natural language. The basic PACT output,
before further integratfon {nto an overall tracking-
correlator design, s the posterior description of
correlation based upon observed or reported data in-
volving the track history pair in question, as i$
represented in (6.31) by poss(QfQj).

On the other hand, {f we choase

6y = prod , 4 = sum , (6.34)
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then (6.31) reduces to the classical probabilistic
data fusfon evaluation given in (4.2},

Next, consider the evaluation of data fusion ac
given in i6.31) when ¢, 1s any copula and or is the
co-copula determined by ¢, as in (6.21), compatible

with the data fusion problem as modeled here. Thus,
sim{lar to the specific example given t{n Section S,
but with generality in mind,using (6.29),(6.30), let
{fixing D and S)

dom{a) = {ay[feI} ‘= dom(Z) = (21]1;1}, (6.35)

dom(p) = (Bijlicl.jcd) 's* dom(Z)xdom(})
= ((Z‘.Hj)licl.JeJ). (6.36)

where I and J are suitably chosen index sets.

Let
RO Fy (6.37)
Jed

be any stochastic process where each marginal u1
and u” 1s some random variable uniformly distributed
over [0,1]. Then define random subsets S, of don(a)
and S, of dom(8) by , for all 1cl, juJ,
ajcsS iffu s possu(ai) (6.38)
ag ¢S, 11U > possu(u')
and
B” 3 SB iff Uus posss(a”) (6.39)

By LSy ire uu> posss(s”) .

Note that if the U, are all {dentical and,separately,
the l.l,_1 are all 1d1nt1cll. then

- of2) - of2) (6.39)
s“ Su * s‘ SB
as given in Treorem 3. Determine $g00or through l.l..

Then it follows th:* the evaluation of data
fusfon 1tn (6.31) becorzz, using (6.21),(6.35)-(6,39),

poss(g=y) = 'Ei§-l)°"‘(K)"- e (6.40)
®
where for all subsets K

n,(_,"io'.((o,(p(u,s»oss‘,(«‘n.p(u1 §5poss (8 1)
€

* pU #4(U sposs_(a,), Uy sposs,(8,,)))
1ek

8ut, using the Poincaré expansion of probabilities,
(6.40) and (6.41) yield

Poss(Q'QJ) . v(‘:; ((ag € S )8(Byy € Sg) )

= p( Ay (S Sp P e), (6.42)

where
a8 o ltenmiz g ity

Noting that the expression in the right side of eq.
(6.31) can be written in a natural way in terms of
possibilitfes analogous to that fn (6.42), we obtatn
the following result:

Theoren 5.

Given variables 0,S,M and auxiliary vartable Z
as before, then under the assumptions leading to eq.

UNCLASSIFIED
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(6.31) and assuming the constructions in (6.35)-(6.39),
it follows that for all jeJ,

poss(2+y) = poss( Ay nis, x SQ¢ 9)
= p( Aj n(Su lSa)f ’)
. P]‘“"Su: SB“J) . (6.44)
where pllussa‘ SB denotes the plausibility or upper

probability measure with respect to random subset
S,* SB of dom(a)xdom{g).

Remarks,

for related results and general background, see
[17], Chapters 3 and 4, Shafer [24] independently has
developed use of plausibility measures and other bi-
Jectively related functions, such as "belief” and
“doubt” measures in modeling combination of evidence
problems. However, Nguyen [25] has emphasized, via
Choquet's Capacity Theorem which characterizes such
functions in terms of both their random set connect-
fons and their generalized Poincaré expansion forms,
that such "measures” require fyll rrecification of
the associated random {subisets.Contrast such madeling
with that employing possibility functions in a general
multiple logic context, as given above, using some pair
of conjunction and disjunction functions, As shown in
the previous section and here, the latter approach only
1n effect requires knowledge of the one point coverage
functions of the relevant random sets involved. Even
in Theorem 5, where an equivalent plausibility descripe
fon is given, 1t is only specified over the AJ's. In
short, eay plaustdtlity measure fs determined by the
incidence function of some appropriate random set with
all ordinary subsets of the space; any beltief wmeasure
{s determined by the superset coverages of a random
set; any doubt measure is determined by the subset cov-
erge of a random set,

In any case, Theores 5 shows that a homomorphic re
latfon exists between the possibilisiic incidence form
of data fusfon evaluation as giuen originally in(6.31)
:nd(;h:‘corresponding equivalent probadbility form

n (6.44),

If in (€.37), | instead of being chosen identical
for 411 U, and all I.‘“ separately, ts such that all Uq

are statistically independent of each other and of all
UU which are also all {ndependent, then the resulting

sﬁ and SB are not only statistically independent, but

are the msagimal entropy one point equivalent represente
atives for poss_ and possg, respectively, (See [20]).)

In another direction, the following important
asymptotic result holds for the data fusion expression
in (6.31): Noting that varfable Z can represent a com-
plex of attributes, some probabilistic 1n nature,
others linguistic-based in nature, so that their des-
criptions can be possibilistic but not probabilistic,
partition Z accordingly into

2= (2'2%) , (6.45)

where w.1,0.9. Z' is the vector of probabilistic ate
tributes and 2* 1z the vector of non-probabilistic

ones, Note that by the canonice! representatfon theor-
em mentioned in Section 6 (see eq.(6.28),if ar archi-
medean tenorm, t-conorm pair i{s chosen for the evalua-
tion in (6.31,, then poss{Q) becomes a monotone trans-
form T, o SAY, for generator function h of Y of &

sum of terms over icl, where
0 1 - T mininio),0), (6.46)
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for all x ¢ R*, and the 1M term , i=(Y, 1), Is
h(1-ey(poss,. (2 £ ), (6.47)
where o is partitioned as Z into (a‘,0”) and

60z, 4, 9o (o (poss .(2%),poss(2{,2%,H,))),(6.48)
. ] a h " -
v (!' :rdol\'(’ ) #h .
£

Note that dom(2’') 1s finite,as well as all other
domains of relevant variables, in order for finite ar-
gument functions 4 and *or t© be weldefined. In some

cases, these finite domains are the result of discreti-
zations and truncations of initial natural domains
which are infinite and/or continuous, espectally those
corresponding to continuous probability density
functions. In this ccntext, suppose all protabilistic
attributes, making up I’ are such that they correspond
to actual protatility dapsity functions which have
211 been so discretized as above. Denote the symbol
Tim (gais(Q)) to mean that the limit of poss{Q) will
dom(Z')

be taken, if 1t exists, as dom(2') and poss . are re-

fined so that all cell sizes approach point limits
and thus poss , approaches a joint p.d.f. fore
ccrresponding to random variable (2')08S). Then we
can show the following:

Theorem 6. Asymptotic 1imiting form for data fusion.
. (See [26).)

Suppose that all of the above assumptions hold
together with some mfld analytic condftions for the
.archimedesn t-porm. t-conorm pair ot chosen for
the data fusion evaluation (6.41). o

Then

du‘;;' gms(‘l’gj» - 'h(vh'tl' (‘(s(z' '“J))))' (6.‘9)

where

v 4(<d n(x)sex) (6.50)

anc all Osasi, =] *

«(x) 4 (30.(1.:!)/3:),.0 . (6.51)

and where tz, denotes ordinary statistical expecta-
tion w.r.t."r.v. I', conditioned on D&S throughout,
where I' corresponds to the limiting p.d.f. for
poss , .

e 9

Thus, up to essentislly monotone transforms, the
limiting form of the data fusfon computations here
1s an averaged value of the data fusion withiorly)fixed
domain attributes I". Further simplification to the
classical integral (and continuous) verston of (4.2)
occurs when the fixed noa-probabilisitc attribute come
ponents are missing. These results can be used for
data checks when modeling via (€.31). (See,e.9. [12].)

For other controversies involving probabflity vs.
possidbility vs. Dempster-Shafer belief,doubt, etc.,
see [17],(espacially, Chapter 10),

7. STRUCTURE FOR DATA FUSION: THE GENERAL
COMBINATION OF EVIDENCE CASE

Let us return to the formal language aspect of
data fusfon as given in Theorem 4, In general know-
Tedge-based systems such as medical diagnosis ones
consist of a collection of inference rules corres-
ponding to A(M;2 .0,S) Vinking either observed data,
such as 0,5 or p‘rtim of intermediate varfable 7
with other portions of 2 or with diagnoses directly,
played dy the role of varfable H. Similar comments
Mold for the attribute varfability term g(l' 0.5).

UNCLASSIFIED
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The somewhat similar, but mcre general structure
for such systems is given in eq.(7.1).
.

d ( l:'('(z HD.S)B k (Z,,H.:D,S
E z1:;<!om(2) gy i 2y Hyp$03 &y (2445005 D)

Ixig ] Boyy
representing (DS ® H), where far a1l k, j, and by
are,possibly expert-derived, boolean functions ,i.e.,
combinations of operations « , v , ( )'.

Next, to complete the general data fusion theory
again referring to Figure 4, we must choose an ALDP,
{.e., a pair consisting of a compatible choice of
‘fon:ul language followed by a semantic evaluation or
ogic,

Consider then as reasonable candidates for the
evaluation of (7.1),ALDP 1,2,3 as 1n Figure 4.

Example 1. ALDP 1,

ALDP T = (boolean alqebra @ with (6.14) valid for 9 ,
Classical (two-valued) Logic )

The calculus of relations for implications for
the forsal language part here, Q boolean with (6.14):

For all a6y 199 28,€ Qui=1,...m, m=1,2,...,

n " [

1:1(319 ay) '((1:‘51)3 (1:101)). (7.2
] " " »

':l(a,’ a) '((1:]"1"“1 v ‘:?i)a (':lo‘))-U.S)

Thus, 1f B=--=8,=8,, then (7.2) .and (7.3} be-
come homomorphic relations for fixed antecedents:

L] n
1:‘(%! s} =(8,9 (1:‘u,n. (.4)
] ]
‘:1‘%’ o) =(8,9 (i:la‘)). (7.5)

But negation s in general not a homomorphic relation:

(8,3 0,) = a8, # (89 (a):0.)).  (7.6)
Mso, for all o .8 ,v, € 8, (7.7
(19 )2 a,: (8,80 )o(8 Ga -8,):(x8q3,) )98 My Ba),

Consider now the semantic evaluation part. De-
noting the evaluation of any proposition variable o,
having domain of possible (or not) values in Q{dom(a)
& ) as function pos:czdon(u) -« [0,1]),for any o cdomtal

poss.(a,) =0,i.e,a,¢a
or (7.8)
poss_(a;) = 1, t.e., a; €0,
and variable o can be identtified with 3 sybset of Q:
a = {ag [c't dol(a‘) [ poss‘(c‘)'l]. {7.9)

with poss playing the role of an ordinary set mesmber-

ship function. Then,Classical Logfc, as & truth-func-
tional logic (see,e.g. [27] for further elaboration)
has the following homomorphic forms, for all propesi-
tion varfables (and similarly for al) propositions)

a8 poss, = max(poss .poss,), (.10
poss, , -ln(poss..pon.). (2.11)
poss , © 1 - poss,, (r.12)
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possy = 0, poss, * 1, (7.13)
and hence

PosSgy o = max(l-possy . poss e (7.18)

where in all of the above equations, all functions are
understood to be evaluated at arbitrary common domafn
points component-wise.

The usual presentation - which is equivalent - is
through truth tables, but the above display allows for
natural generalizations to Iadeh's (min-max) Fuzzy
Logic in ALDP 2.

It also follows that the semantic evaluation of
the data fusfon form in (7.1) becomes here:

poss{0=Q;) = posspy ¢ 4 (Hy)

- max( ain (max(1-7,., , 2.0 ),
1, doa(2) kel . w13 fg
(7.15)
shere for all k,1,J
;.kij i W”jk(z1a”"5°:s) . (7.16)
D possy, (2,.4y:0.5), (7.17)

and where the expressions in (7.16) and (7.17), 1f
necessary, can be evaluated further using (710)-(7.14)

But since we have here a simple two-valued logic,
q.{7.1 ) reduces to:
poss(Q-Qj) =1 {ff there is some attribute value
l‘ such that for each k, ksl,...m,
(jki hk) when avaluated at Zi,Hj.D.

S, is true,i.e., poss,. 2 )=
. . %, ey 0P
=] , or equivalently, Zi.HJ.D.S an

fire tnference rule (jis )2 etth-
er jk is false at this evaTuation

(vacuous antecedent being satisfied)
or more non-trivially, hk ts true
for this evaltvation g (7.18)

poss(Q?Qj) = 0 iff no such attribute valus 2, as
above exists. {(7.19)

Alternatively, one can evaluate (7.1), by first
directly applying the calculus of relations for in-
ferences in the formal language ((7.2).(7.3)) and then
evaluate the result semantfcally, Thus,

poss(Q=q;) ~ poss(q(H;D.5)9 A(Ky:0,5))
- -ax(|-poss(q(uj;0.5)).POSS(A("z;D.S)))

where q . s 7.20)
H,:D,S . (R, .o f .
athgi0es) Zc ueﬁm g kA fia g 2 e )
(r1.21)
and . F .
] .D.S . » 1.2

where, i turn,(7.10)-(7.14) could be used to evaluate
further poss(qf and poss(a), which of course should
l:::.hccl to (7.15) and tius (7.18)1,(7.19), as »

c . .

The philosophy of approach in this example is
that for the mode) ing of data fusion,in the context
of medical diagnosis, for example, although truth can
only be 0 or 1, by introducing sufficiently many in-

=12~
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ference rules in the knowledge-based system, aultiple-
valued truth logics can be avoided,

Example 2. ALDP 2,

ALDP 2 = (modified boolean algebra 0 with (6.14) ,
2adeh's (min-max) Fuzzy Loic)

As mentioned earlier {again, see Figure 4 and
associated remarks tn Section 2), "modified™ boolean
means a pseudo-complemented (distributive) lattice,
or roughly a boolean-1ike system without the Law of
Excluded Middle and all {ts consequences holding.
(See [28],pp. 14-16 for a related discussion. [28] as
3 whole 21so serves as a good introduction to Zadeh's
Fuzzy Logic.)

The calculus of relations for implications for
the formal language part here, ao' is the same form-
ally as that for 0 as in Example 1, except for the
following s1ight modifications:

(X) The middle equation in (7.7) will pe valid, pro-
vided that o, s ﬂo ,i.e., a * 'o" , otherwise in

°
general 1t is not true,
(Il ) Adjoin the term v 8,8, to the consequent of

9 on the left hand side of the equality for the far
right chatring equation in (7.7).

Then the semantic evaluatfons procede in formally
the same way as for ALDP 1, but hers the range of val-
ues of each possibility function is ia the unit inter-
val [0,1], instead of being restricted to the set
{0,1}, replacing (7.8, Thus ags.(7.9)-(7.17) all re-
main valid here. Eq.(7.18) and eq.(7.19) are no longer
valid in the context of ALDP 2. On the other hand,eqs.
(7.20)~(7.22) hold here, with apgropriate modifica-
tions following ttose in (I),{11) above.

Example 3. ALDP 3.

ALDP 3 = (boolean algebra n with (6.14),
Probability Logic)

Since 0 is the same as in Example 1, all of the
relations in eqs.(7.2)-{7.7) hold hers also. On the
other hand, the semantic evaluation aspect - Probabil-
ity Logic - differs considerably from the two previ-
ous examples. In this non-truth-functional logic (see
again [27], espectally Chapter 2, Sections 26 and 27
for background), we have the usual basic (finftely
additive) probability properties, for a given prob-
ability measure p:a - [0,1], playing the role of the
sexantic evaluation poss in the two previous examples.
(In order to use the more standard notation, p is used
in place of poss) Only for purposes of comparisons the
following well-known properties are given:

For all propositions °o'°o cn,

plagv B)) = plag) # pls,) - Plas 8,), (7.23)

the modularity property, extending to the Poincare
expansion, used previously &n this paper, where for
a1l oy,. 08, € R,detting 1. 80V,. 0, netL2,..

PV a) = SN o gy, (.20
§=) [ 134 {ek

plag) = 1 - plag) {7.25)

p(0) =0, (1) =1, (7.26)

resulting in the following evaluations for implication
(by(s.ug. for ) and some less-known inequalities
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invalving conditional probabilities:
P(8y 2a,) = plBy v a,) = 1-p((8va ) )= 1-p(B <ay)
* playlsy) + plag|s,) - p(8 -al)
Plagieg) + plag(s,) - plag(s )+p(s,)
pla,l8,) + plajls,)-pls;)
2 pla 18} (1.21)
2 plays,) o (7.28)

where the conditional probability is defined as usual
as, ¢.9.,

pla,l8,) d pla, 8 )/p(8,), (7.29)
provided p(so) > 0.

The above inequalities are strict,in general,and
show that,basically, we cannot identify implication,
as defined in the formal language (i) via eq.(6.14),
with a "conditional object™ such as (a |8 ), otherwise
this would, following evaluations by p°and making the
natural identification

pllayle,)) = playls,) , (7.30)

contradict the fnequality in (7.27). Hence the behavior
of conditional probabilities, while roughly resembling
that of the probabiiity of implications is not the

same - indeed, one can, by choosing judiciously 8
close to o in some natural sense, make p(Bg3 og) o
approach unity, while for the same choice of ay,.8,,
p(c.!ao) approaches zero. The significance of these

results will be explored further in the next section,
where we develop an ALDP (4) where formal implicatfons
aoé o° can be identified with "conditional objects”

(oolao). whese sesantic evaluations as in (7.30) are

conditional probabilities; hut tn light of the above
remarks, necessarily these entities lie outside of the
original space of propositions a.

Returning to the data fusion form in (7.1), the
semantic evaluation for Probability Loqic becomes,
using first (7.24) and then (7.5},

p(2+Qy) = p(0-S 3 Hy)

- z (_‘)Cl"d(l)'] . p(ﬁ 3;?). (7.3‘)
opKedom(Z)
which can be further svaluated through use of (7.27)
(equality part) 1n conjunction with (7.23)-(7.26),

where similar to (7.21), (7.22), but differing in the
operations involving Z‘,

' 4] . s .
I PR PR (7.32)
(z,ck, ) (Z'ek,)
ke l- ke I-
and 00
g (7.33)

AJ . .kij B

6
ke l.

Alternatively, by using both (7.4) and (7.5) from

the calculus of inference relations, and then applying

P, one obtains the same as (7.20), with"poss replaced
by”p" Thus,

v(Q-Q,) . p(c(HJ;D.S) ? A(Hy:0,5)), (1.34)

which can be evaluated through the equaiity part of
(7.27) or through the expansion

~13-
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puot%)'ﬂg)*ﬂ%)-ﬂﬁwg

= p(8y) + plag-8,), (7.35)
for all 3 .8y ¢ 1, followed by use again of the basic
properties of probability function p in (7.23)-(7.26).

Obviously, in the above schemes, the number of
computations involving probabilities of the conjunct-
{fons of relevant events or propositions can be quite
large and,as well, it may be difficult to evaluate
each suh conjunction, ufless some simplified depen-
dency or other relations are assumed for certain of
the events, As a consequence , saveral teckniques
have been established for evaluating combination of
avidence in & kncwledge-based system, when marginally
one has dvatlahle estimates of probabilities, or rela-
ted certainties or likelihoods or confidences, etc.
for each of the inference rule forns(]k'J 3 htlj)‘

Some of these procedures are ad hoc in nature, others
Ere]nore analytically based. For a compendium, see
29].

8, DATA FUSION AND CONDITIONAL OBJECTS

In Section 7, we have seen how a general {nfer-
ence rule structure for data fusfon can be evaluated
through three different approaches ALDP 1-3. In all of
these, the key connector for {nference 3 was inter-
preted in the formal language components as % as
given in eq.(6.14), On the other hand a natural - and
commonly used - semantic evaluation for inference
rules 1s through conditional probabilities. That is,
the evaluation of a typical form (jHj ? kkij) fs

p(hkijljkij) for some choice of probability measure

p over 0, the set of all events or propositions, which
for purposes of simplicity, from now on Is assumed to
be a boolean algebra. With this ctofce of evaluation,
apropos to the spirit of this paper, we seek a formal
language which will be compatible with these evalua-
tions,!.e., will form an ALDP,

However, as pointed out 1n the discussion in the
previous section centered around (7.27), one cannot
{centify implication via (6,14) with conditioning
as evaluated in {7.30). The apparently commonly-held
belief that such an identification can be made with
no serious consequences, often calied in the 1itera-
ture of logic as Stalnaker's Thesis [30], was attacked
by Lewis [31] and independently by Caiabrese [32]. The
latter indeed showed,by use of a simple canonical ex-
pansion, that not only ® in (6.14) would not work,
but any boolean function of two variables could not be
used to play the role of conditioning, compatible
with conditional probability evaluations.

Moreover, 1t would be particularly desirable, to
replace this rather flawed situation, with an ALOP
which would yield feasible computations for data
fusfon or at least be on the same order of complexity
as ALDP 1,2,3. Note of course, {f truly all inference
rule antecedents are identical, as 1s the case es-
sentfally in Sections 4,5,6, then there is no real
need to work with conditional objects, since all con-
ditioned events cen be <simply considered as uncon-
ditional ones relative to their intersections with the
fixed common antecedent. or one can stick with the
interpretation. of implication as in (6.14), Compatible
with this result | note the homomorphic relations
for implication ® w.r.t. disjunction and conjunction
- but not negation - as given in eqs.(7.4),(7.5).

But,for the modeling of data fusion through in-
ference rules with varying antecedents, no such direct
simplification occurs and the development of such con-
ditional objects would address the problem. Although
we have stated ahove that implication opurater * for
a fixed antecedent yields homomorphic relations for
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v.8, but not ( )', conditional probabilities are come
patible with homomorphic relations holding for all
three operations, for any fixed antecedent,i.e., Ob-
viously, for all 'o"o"o cG,

o
pllaglvg) v (8 1y )) = plagy 8 1v,) . (8.2)

Pllaylv )o(8,1v,)) = plag-g |v,) . (8.3)

Pllaglyg)') = 1 = plaglvy) = plagly,), (8.1)

Recall also the oparation + over 0 , which tn
terms of v, ¢, { )' is , for any 848, € Q

gt B, a <8 v asL, (8.4)

and conversely,
a,v Io - c°0 300 ao'ﬂo (8.5)
o; "ayt 1. (8.6)

Thus there is a dijective relationship between
(a,v,«.{ )'), a boolean algebra and (o,+,-), a boolean
ring. (Far further discussion and properties, see [33)
Furthermore, recall the Stone Representation Theorem
({33], Chapter 5) which establishes an order-preserve
ing isomorphism between any given boolean ring and a
corresponding boolean ring of actual subsets of a
;;;ed universal set say X where the correspondences

d:

1 =X ; ¢+« 4 (symmetric set difference);
0«+® ;v eeu (set unfon);
« ++ n (set intersection);
() « € or X«{ ) (set complemenet);
s (partial order over g) «— g (subset rcl?;‘g?)

A1l following results can be interpreted in
terms of ordinary subsets and the altcrnative boolean
algedre or doclean ring structures.

toting that alsc, for any 'o"o e f,
plagls,) = plas 8, 18,) » (8.8)

the next result shows that under quite mild ard simple
conditions, conditional objects are essentially char-
actarized:

Theorem 7. Eg:alctnrizatfon of conditional objects

Given boolean ring @, thers 1S a unique space
i of smallest possibie classes ~according to subset
partial ordering-demoted es the conditional objects
(aglvg) » (8,1v.). (8glc,)...., Tor s

.. £ 9, such that the measure-free counterparts of
(8.1)-(8.3) and (8.8) hold. That is,

(a lvy)* = {ailv,) o (8.9
(aglvg) v (8 1vy) = (agv 8,175}, (8.10)
ag Bolrg)s  (8.11)

and equivalent to (B8.9)-(8.11), one can regquire eqs.
(8.11) and

(aglyg) + (8,lv) = (a,e 8 1vg)  (8.12)

°°n‘°-Y°|‘°n

(aglvy) - (aolvo) =

to hold; and
(aglvg) © (agovglvy). (8.13)
Specifically, such conditional objects consti-

tute all possible principal {deal cosets of ring 0,
where for any oY, € Q,
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\ ey! ¢
(aglvg! = 8ovg ¢ oy

- 0-16 + aouyo - Q-Y; v °o'7°
- L] ' »
{x 1 * 3, 1°|x eflsa, (8.14)

the principal ideal coset generated by 16 with rest-

Bragf: Use first the basic hb-onorphisn theores for
quotient rings and the cquivalence class property
of cosets applied to (8.13). Again, see [34].

Thus, for a fixed antecedent, even though, as
stated earlier the resulting conditional objects
could be fdentified as subsets or subevents of the
antecedent (noting Stone's Representation Theorem),
nevertheless the actual algebraic structures of
these entities will be of non-trivial use: Suppose
we wish to perform boolean operations an conditional
objects with differing antecedents; how can this be
;cgo-plishcd, conpaf‘gle with the results in Theorem

Previous work in this direction includes:Hail-
perin [37], who extended some of Boole's original
{ideas and developed essentially the same entities
as produced here, but from a different- and more
complicated-persgective, with relatively little
attention paid to developing operators among con-
ditional objects with different antecedents, using
the technique of universal algebras and “"partially
defined”operators; Oomotor [38], who following the
direction of "sualitiative probability structures”,
as used in preference orderings and subjective proba-
bility, developed rather complicated expressions
for combining conditional objects, not realizing the
rich structure inherent in such entities;Adams iss].
among others in the literature, who considered “con~
ditional logics” which appear to be somewhat related
to the concept produced here, hut differ considerably
tn structure; and Calabrese [32] who was apparently
the first to attempt to develap directly conditional
objects from a logical consequence viewpoint, which
can ba shown to be equivalent to that given here{[36],
Saction 2);but Calabrese proposed ad hoc definitions
for boolean operations on conditional objects with
varying antecedents,

In the approach tak:n here.’quglnning all re-
sults frop first principles consideratfons, the re-
quired operations upon con 1tional obJects are defin-
ed simply as the natural class or component-wise ex-

tenstons of the original operations, Thus, for exam.
ple,let ageB,s7 8 ¢ @ arbitrary, The natural class

0'0’"0
extension of o applied now to (aolno) . (yolaoj. not-
ing each conditional object is in reality via (8.14)
a subset of g, yields:

(a,18,) » lyole,) = (a e rlqc(aolso).r:(yoldo))
= {(xe8y + a)e(yes] + YJ'KYECF
s A. (8.15)

The basic structure of the conditional object
extension & of 7 is summarized next.

Theorem 8. Basic structure of & [34],[35],[36].
{1) In terms of quotient rings,
8= ulpfaey) s ulnfaev). (8.16)
€ v €0

Yo °

{11) Conditioning as defined here can be identified
essentially as the functional inverse of one-stded
conjunction,i.e., conditional objects (aolyo) all sat-
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1sfy the zasic relation analogous to (7.29) for
conditiona: probabilities and a related conditton:

(aglvg)evg = ap°vy (8.17)
and
(ag'vg) = (x]x € 8, xoy, = ajeyy). {8.18)

(111) The watural class extensions of a1l boolean
operations from 0 to 8 are well-defined/closed with
ring-1ike properties,i.e., fn the same previous
sense, & fs a modi1fied boolean algebra.

(1v) [ & »
since for a1l a ¢ 0, (8.14) shows {mmediately that

(ay11) *ta ) . (8.19)

(v} Alse, partial order s defined over o, character-
] ized by , “or any ‘o » eo ¢ f,
uos !o ift LA uo'l° iff l° . Io va, ,(8.20)
can be ex:=sndad directly to £ with the same charac-
terizaticas as in (8.20{ whare{unconditional) ob-
Jects In 5 are replaced by conditional ones in {,
Then,combiaing this with (191) and (1v) establishes
(8.v.e,( )*.*:5) as a natural extension of its
unconditicms) counterpart {Q,v,-,( )',+is).

vi) A bas‘c calulus of operatfons 1s , in addition
go lu praserties in ta.ﬂg:(l.)l) for any a7y € 0,

'-‘..-..u n"

. - I. " ). (8.21)
4 Yo (va | varsyg v o v}, (8.

1ot “ilm fal Var Tt gy

. : | v : ).(8.22)

o falv) oy e el valey, v - v.),(8.2
LIRS LA

fe"

[ ] [ ]

* (.’IY’) . ( + ‘,I M Yi) . (3-23)
js* {s1 ° f=]

Moting the reductions of (8.21)-(8.23) when
anmmn:gv,-'"'v.-vo , as 1n (8.9)-(812), 1t

follows tra< a1l boolean operational extensions
over 0 co‘ncide with corresponding coset operations
when restr cted to a fixed quotient ring, here
ﬂlﬂ'v; .

(vi1) As & special case of (8,22), the following
chatning condition holds for all 'o"o"o ca;

(a,85lvg) = (8,1vg) (ag185°7,)- (8.24)

Proof: The most difficult proof s that of (8.22).
X sketch cf the proof for the case m=2 13 given in
[35], Theores 3.1; a full proof s presented in [34]
whers al1 sther proofs are also given. .

) Remarks .

Apropos to Theorem 8(1), 1t follows that al?
results g the theory and application of linear
(w.r.t. + over v) boolean equations, such as pre-
sented 1n "40].can be reinterpated in terms of con-
“ ditiona) zzjects. Extensions of the concept of con-
ditioning <o more general structures than boolean,
such as mc2ified boolean,or Yon Heusann regular, or
to a catesory theory setting,have been considered
[

Many other mathematical properties have been
derived fcr conditional cbjects, facluding: char-
acterizations for ttarated condittonal objects,i.e.,
conditions: objects whose antecedent and consequence
are alsc conditional objects; extensions of Stone's
fepresentacion Theorem to conditional objects; de-
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velopment of an outer approximation technique to
force closure for non-boclean functions, including
arithmetic operations over conditional objects; rela-
tions established between ordinary conditional random
varfables and a randomized version of conditional ob-
Jects; and estiblishment of varfous probabilistic
connections, such ds messure-free independence; meas-
ure-free bayesian and sequential learning forms; and
the proof that the extension of any probability
measure p:0 + [0,1] to p: ~ [0,1] through eq.(7.30)
ylalds for the extension a monotone function.( Again,
see [34]-[36], for further details.)

Most importantly here, analoguus of calculus of
relations for ALDP 1 (eqs.(T.z)-(7.7)) hold for con-
ditienal objects, as Theorem 8 shows. Moreover, the
hypotheses for Theorem 4 411 hold here. At this point
let us cefine ALDP 4, for a given boolean algebra
as simply

ALDP 4 = (&,p), (8.25)

where p:8 « [0,1] is the condittonal probability ex-
tension of p:a ~ [0,1], as mentioned above and where
fmplication is interpreted as conditioning, f.e., for
an oo.lo cQ,

(8, ® o)) = lal8,). (8.26)

(Mote that fmplication or conditioning here is re-
stricted to be upon unconditional elements, i.¢. el-
ements of 2, not upon other properly conditional ob-
Jects. Some results indicate a possible fdentification
of fterated conditional forms with simple conditional
objects([36],Section 4} so that tn a sense this re-
striction may de unnecessary.)

Ftnally, consider yse of ALDP 4 fn evaluating
data fusion expression Q in (7.1):

Direct use of (8.21) and (8.22) show that
n

{Q=0.) = p{ . 1
) ol v d sl )

* plalHy;D,5)a(Hy;0,S)vq(H {:0,5))
= P(alH)30,5))/p(a(H;:0.S)valH 130,5)),

(8.27)
atc., where ¢ 1s given in eq.(7.21) and

L]
H,;0,5) ! . °f . (8.28

Thus, due to the calculus of operations given in
Theores 8, computations for data fusion using ALDP 4,
with implication tnterpreted as a cenditioning,com-
patiole with conditional probabilities, appears mno
wore complex than that for the other choices of ALDP's,

9. CONCLUDING DISCUSSION

Susmary

This paper presents a number of results contribut-
ing toward a cohesive top-down theory of data fusion.

In Section 1, a general overview of the data
fusion problem is presented.with the conclusion that
data fusion {s identifiable as the combination of evi-
dence occurring within decision nodes of C” systems.
In Section 2, qualitative relations are sstabllshed
pinpointing the role of data fusion in C° systems- es-
pecially as perceived by the authar in previous work
(see Fi.urss 1,2,3), where data fustcn is a process
within a C° decisfon-maker node fatermediate with
incoming “signal” detection and hypotheses selection.
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Also, the concept of an ALDP (algebratc logic des-
cription pair} 1s introduced as part of of the total
evaluation procedure involving data fusion (Figure 4).
Three important examples of ALOP's are given, corres-
ponding to Classfcal Logic, Fuzzy Logic, and Probabil-
i1ty Logic where in all,implication {s interpreted as
a disjunction of a negation and affirmation. A partic-
ular quantitative counterpart of the qualitative model)
given in the pravious section is presented in Section
3. In this model, the collection of all updated mar-
gina) node state distridutions (in either the classic
probability sense or in a multivalued logic sense of
broader scope) s shown to depend functicnally on es-
sentially ten types of primitive relations [in the
probability interpretation, they become conditional
probn!llitles] among the basic varfables determining
the C” system fn question. These varfables include:

S. "signa¥Wnodes N reseive; R, response of nodes; D, de-
tection state; H, hypotheses selection; and F, algo-
rithm chotce (Theorol 1). In turn, this r!su!t is
used to establish a Zero-sum two porsgn C~ decision
game between adversary and friendly C” systems, Therg
each game move corresponds to a choice of the ten
types of primitive relations, up to feasible and com-
patidle conditions, and the resulting loss due to a
Joint move by both players is some figure-of-merit
based upon moe’s and mop's, which are in turn eval-
vated through the node state distributions as a con-
sequence of the primitive relations'forms(Figure 5).

In Section &4, the quantitative expression for
data fusfon p(H|D,S) (eq.(4.1)) is considered for the
classical probability case. An auxiliary variadble 2
1s introduced for the evaluation, representing possi-
ble characteristics or attridbutes which can be used
to connect D and S with H through probabilistic con-
ditioning here. This results in the well-known weight-
ed sum of conditional probabilities form (eq.(l.z)?.
In Section 5, two modifications of the classical prob-
ability case are considered. First treated is the
situation where varfables Z or H fn actuality are
not random variables due to their“sample spaces of
elementary events or domsin values not representing
truly disjoint (and exhaustive) events, but where
the relevant subfactors contriduting to these - in
actuality, compound - events can be determined at
least in a full probabilistic sense. This results, in
effect,in random set descriptiomreplacing the
orfginal "distributions” for the variables (Theorem
2). Next, the case where not all subfactors are
known is considered. In this situation, 1f experts
are available, possibility functions can be gleaned
for the averlapping or vague events, which, in
effect, take into account the possible joint accur-
rences, and thus can yield functions which exceed
unity in susmation. However, it is shown in Theorem
3, quite similar in form to Theorem 2, that this is
always equivalent to the partia) specification
(through one peint coverages) of a random set model,
thereby 9iving rigorous justification for this pro-
cadure. The results in Section 5 are further exten-
ded in Section 6, where the formal language aspect
for data fusfon is hasized (Theorem 4). This re-
sult (extending (4.2)) shows data fusion can, under
relatively mi1d assumptions, be expressed as a dis-
Junction of conjunctions of inference rules and var-
fab111ty or error forms connecting 0,5, and I with
H. In turn, 3 general semantic evaluation for data
fusion is presented through t-norms, copulas, etc.
(See (6.31)This evaluation form generalizes the
PACT algorithm which seeks to determine correlation
leve!l between track histories through disparate data
sources, 1ncludin? passible linguistic-based {nform-
ation (12]. A relation 1s given {n Theores 5 con-
necting the above-mentioned genera) data fusfon
distribution with random sets and ODempster-Shafer
plausfbilfty functfons.

In Section 7, the most general formal setting
is established and analyzed for describing data
fusion. Basically here,data fusion s considered

-16-
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a disjunction of conjunctions of inference rules with
antecedents and consequences in general functiona)
forms {nvolving possibly all four relevant varatbles
D,S,Z,H (see eq.(7.1)), essentially the same structure
as a genera) knowledge-based system, such as used in
medical diagnosis or parameter estimation. A calculus
of operations involving implications is reviewed for
each ALDP and then applied to the evaluation of data
fusion (Examples 1,2,3). Finally, a fourth ALOP s
determined in Section 8, based on interpreting infer-
ence rules through conditional probabilities. For con-
sistancy, this requires the full development of a
calculus of “conditional objects” (Theorems 7,8). It
Is shown that this ALDP can be succesfully used to
eveluate data fusfon probabilities with a level of
complexity of calculations not exceeding that of the
alternative methods, but here allowing rigorously for
c?nditional probability interpretations of implica-
tions.

Futyre Work and Open Problems

In this paper the cognitive process phase has
been used only implicitly in the evaluation of data
fuston distributions. Future work will be directed
toward more direct use of mental imaging and related
thought processes. This 1is because in addition to the
"formalistics” involved in translating detected sig-
nals (or "signals”, using the more general sense)
as shown in the sequence of processes in Figure 4,
heuristic processes may also be used, possibly short-
ening the process path or providing alternative means
as for example in NI (Natural Intelligence).

Alternative structures for data fusion may aiso
be fnvestigated - as opposed e¢.g., to that given here
in (6,16) or (7.1) 1n formal language form. Recursive
computations for general data fusion may also be pos-
sible, analogous to the well-known Kalman filter or
related maximum 1{kelihood forms. In a similar vein,
progressive change for hypotheses distributiomsbased
upon newly arriving data may also be monitored through
entropy measurements. Jetails of this Ndve yet to be
established for the general case we seek here.

Finally, conditionsl object theory must certainly
be developed further, if only to be able to better
treat {terated conditioning and required approxima-
tions or truncations of computations for data fusion
svaluatiaone< whm made through conditional probability
evaluation of inferance forms,i.e,, through ALDP 4,
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